3.382 \(\int \csc ^2(e+f x) \sqrt{b \sec (e+f x)} \, dx\)

Optimal. Leaf size=62 \[ \frac{\sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{b \sec (e+f x)}}{f}-\frac{b \csc (e+f x)}{f \sqrt{b \sec (e+f x)}} \]

[Out]

-((b*Csc[e + f*x])/(f*Sqrt[b*Sec[e + f*x]])) + (Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2]*Sqrt[b*Sec[e + f*
x]])/f

________________________________________________________________________________________

Rubi [A]  time = 0.0572937, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2625, 3771, 2641} \[ \frac{\sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{b \sec (e+f x)}}{f}-\frac{b \csc (e+f x)}{f \sqrt{b \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^2*Sqrt[b*Sec[e + f*x]],x]

[Out]

-((b*Csc[e + f*x])/(f*Sqrt[b*Sec[e + f*x]])) + (Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2]*Sqrt[b*Sec[e + f*
x]])/f

Rule 2625

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> -Simp[(a*b*(a*Csc
[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n - 1))/(f*(m - 1)), x] + Dist[(a^2*(m + n - 2))/(m - 1), Int[(a*Csc[e +
f*x])^(m - 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && IntegersQ[2*m, 2*n] &&
!GtQ[n, m]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \csc ^2(e+f x) \sqrt{b \sec (e+f x)} \, dx &=-\frac{b \csc (e+f x)}{f \sqrt{b \sec (e+f x)}}+\frac{1}{2} \int \sqrt{b \sec (e+f x)} \, dx\\ &=-\frac{b \csc (e+f x)}{f \sqrt{b \sec (e+f x)}}+\frac{1}{2} \left (\sqrt{\cos (e+f x)} \sqrt{b \sec (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)}} \, dx\\ &=-\frac{b \csc (e+f x)}{f \sqrt{b \sec (e+f x)}}+\frac{\sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{b \sec (e+f x)}}{f}\\ \end{align*}

Mathematica [A]  time = 0.106407, size = 47, normalized size = 0.76 \[ \frac{\sqrt{b \sec (e+f x)} \left (\sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )-\cot (e+f x)\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^2*Sqrt[b*Sec[e + f*x]],x]

[Out]

((-Cot[e + f*x] + Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2])*Sqrt[b*Sec[e + f*x]])/f

________________________________________________________________________________________

Maple [C]  time = 0.139, size = 184, normalized size = 3. \begin{align*}{\frac{ \left ( -1+\cos \left ( fx+e \right ) \right ) ^{2} \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}{f \left ( \sin \left ( fx+e \right ) \right ) ^{5}} \left ( i\cos \left ( fx+e \right ){\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }},i \right ) \sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}\sin \left ( fx+e \right ) +i{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }},i \right ) \sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) \right ) \sqrt{{\frac{b}{\cos \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^2*(b*sec(f*x+e))^(1/2),x)

[Out]

1/f*(-1+cos(f*x+e))^2*(I*cos(f*x+e)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*
x+e)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)+I*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(co
s(f*x+e)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)-cos(f*x+e))*(cos(f*x+e)+1)^2*(b/cos(f*x+e))^(1/2)/sin(f*x+e)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )} \csc \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(b*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e))*csc(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{b \sec \left (f x + e\right )} \csc \left (f x + e\right )^{2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(b*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(f*x + e))*csc(f*x + e)^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec{\left (e + f x \right )}} \csc ^{2}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**2*(b*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(b*sec(e + f*x))*csc(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )} \csc \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(b*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e))*csc(f*x + e)^2, x)